Любимое дело

Каким плоскостям принадлежит точка f. Плоскость

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС . Требуется построить недостающую проекцию D 1 точки D , принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Рис. 2.5. К построению проекций точки, принадлежащей плоскости

Через точку D 2 проводим проекцию прямой d , лежащей в плоскости АВС , пересекающую одну из сторон треугольника и точку А 2 . Тогда точка 1 2 принадлежит прямым А 2 D 2 и C 2 В 2 . Следовательно, можно получить ее горизонтальную проекцию 1 1 на C 1 В 1 по линии связи. Соединив точки 1 1 и А 1 , получаем горизонтальную проекцию d 1 . Ясно, что точка D 1 принадлежит ей и лежит на линии проекционной связи с точкой D 2 .

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости АВС , проведем через ее фронтальную проекцию Е 2 прямую а 2 . Считая, что прямая а принадлежит плоскости АВС , построим ее горизонтальную проекцию а 1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а 1 не проходит через точку Е 1 . Следовательно, точка Е  АВС .

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в 2 построить другую в 1 * считая, что в  АВС . Как видим, в 1 * и в 1 не совпадают. Следовательно, прямая в АВС .

2.4. Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными . Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости АВС начинаем с вычерчивания ее фронтальной проекции h 2 , которая, как известно, параллельна оси ОХ . Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости АВС , а именно, точки А и 1. Имея их фронтальные проекции А 2 и 1 2 , по линии связи получим горизонтальные проекции (А 1 уже есть) 1 1 . Соединив точки А 1 и 1 1 , имеем горизонтальную проекцию h 1 горизонтали плоскости АВС . Профильная проекция h 3 горизонтали плоскости АВС будет параллельна оси ОХ по определению.

Фронталь плоскости АВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f 1 , так как известно, что она параллельна оси ОХ. Профильная проекция f 3 фронтали должна быть параллельна оси ОZ и пройти через проекции С 3 , 2 3 тех же точек С и 2.

Профильная линия плоскости АВС имеет горизонтальную р 1 и фронтальную р 2 проекции, параллельные осям OY и OZ , а профильную проекцию р 3 можно получить по фронтальной, используя точки пересечения В и 3 с АВС .

При построении главных линий плоскости необходимо помнить лишь одно правило: для решения задачи всегда нужно получить две точки пересечения с данной плоскостью. Построение главных линий, лежащих в плоскости, заданной иным способом, ничуть не сложнее рассмотренного выше. На рис. 2.8 показано построение горизонтали и фронтали плоскости, заданной двумя пересекающимися прямыми а ив .

Рис. 2.8. Построение главных линий плоскости, заданной пересекающимися прямыми.

краткое содержание других презентаций

«Определение двугранных углов» - Прямая, проведенная в данной плоскости. Проведем луч. Основание пирамиды. Двугранные углы в пирамидах. Задача. Точка К. Решение задач. Определение. Ромб. Перпендикулярные плоскости. Найдите величину двугранного угла. Построим BK. Точки М и К лежат в разных гранях. В одной из граней двугранного угла, равного 30, расположена точка М. Определение и свойства. Построение линейного угла. Найдите угол. Провести перпендикуляр.

«Основные аксиомы стереометрии» - Первые уроки стереометрии. Плоскость. Геометрия. Древняя китайская пословица. Следствия из аксиом стереометрии. Изображения пространственных фигур. Предмет стереометрии. Точки прямой лежат в плоскости. Четыре равносторонних треугольника. Аксиомы стереометрии. Следствия из аксиом. Аксиома. Пирамида Хеопса. Плоскости имеют общую точку. Геометрические тела. Основные фигуры в пространстве. Источники и ссылки.

«Понятие пирамиды» - Равные углы. Модель современного промышленного предприятия. Пирамиды в химии. Пирамида в геометрии. Путешествие вокруг света. Сечения пирамиды плоскостями. Маршрут путешествия. Проекции. Египетские пирамиды. Основание пирамиды. След сечения. Боковое ребро. Правильная пирамида. Виртуальное путешествие в мир пирамид. Контрольные вопросы. Смежные боковые грани. Чудеса Гизы. Ступенчатые пирамиды. Многогранник.

«Декартова система» - Определение декартовой системы. Понятие системы координат. Координаты любой точки. Декартова система координат. Прямоугольная система координат. Введение декартовых координат в пространстве. Координаты точки. Рене Декарт. Вопросы для заполнения. Координаты вектора.

«Примеры симметрии в природе» - Дискретная симметрия. Примеры симметричного распределения. Симметрия в природе. Симметрия внешней формы кристалла. Симметрия цилиндра. Виды симметрии. Природные объекты. Что такое симметрия. Симметрия является фундаментальным свойством природы. Симметрия в географии. Симметрия в биологии. Человек, многие животные и растения обладают двусторонней симметрией. Симметрия в геологии. Симметрия в физике.

«Задачи на параллелограмм» - Центры окружностей. Периметр параллелограмма. Площадь параллелограмма. Равенство отрезков. Острый угол. Две окружности. Свойство параллелограмма. Средняя линяя. Углы. Признаки параллелограмма. Площадь. Четырехугольник. Часть. Треугольники. Точки. Касательная к окружности. Доказательство. Свойства параллелограмма. Высота параллелограмма. Диагональ. Геометрия. Окружность. Диагонали параллелограмма.

Как построить на чертеже прямую линию, лежащую в заданной плоскости? Это построение основано на двух положениях, известных из геометрии.

  1. Прямая принадлежит плоскости, если она проходит через две точки, принадлежащие данной плоскости.
  2. Прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости, и параллельна прямой, находящейся в этой плоскости или параллельной ей.

Положим, что пл.α (рис. 106) определена двумя пересекающимися прямыми АВ и СВ, а пл. β - двумя параллельными - DE и FG. Согласно первому положе

нию прямая, пересекающая прямые, определяющие плоскость, находится в данной плоскости.

Отсюда вытекает, что если плоскость задана следами, то прямая принадлежит плоскости, если следы прямой находятся на одноименных с ними следах плоскости (рис. 107).


Положим, что пл. γ (рис. 106) определяется точкой А и прямой ВС. Согласно второму положению прямая, проведенная через точку А параллельно прямой ВС, принадлежит пл. γ. Отсюда прямая принадлежит плоскости, если она параллельна одному из следов этой плоскости и имеет с другим следом общую точку (рис. 108).

Примеры построений на рис. 107 и 108 не должны быть поняты так, что для построения прямой в плоскости надо предварительно строить следы этой плоскости. Это не требуется.

Например, на рис. 109 выполнено построение прямой AM в плоскости, заданной точкой А и прямой, проходящей через точку L. Положим, что прямая AM должна быть параллельна пл. π 1 . Построение начато с проведения проекции А"М" перпендикулярно к линии связи А"А". По точке М" найдена точка М", и затем проведена проекция А"М". Прямая AM отвечает условию: она параллельна пл. π 1 И лежит в данной плоскости, так как проходит через две точки (А и М), заведомо принадлежащие этой плоскости.

Как построить на чертеже точку, лежащую в заданной плоскости? Для того чтобы сделать это, предварительно строят прямую, лежащую в заданной плоскости, и на этой прямой берут точку.


Например, требуется найти фронтальную проекцию точки D, если задана ее горизонтальная проекция D" и известно, что точка D должна лежать в плоскости, определяемой треугольником АВС (рис. 110).

Сначала строят горизонтальную проекцию некоторой прямой так, чтобы точка D могла оказаться на этой прямой, а последняя была бы расположена в данной плоскости. Для этого проводят прямую через точки А" и D" и отмечают точку М", в которой прямая A"D" пересекает отрезок В"С". Построив фронтальную проекцию М" на В"С", получают прямую AM, расположенную в данной плоскости: эта прямая проходит через точки А и М, из которых первая заведомо принадлежит данной плоскости, а вторая в ней построена.

Искомая фронтальная проекция D" точки D должна быть на фронтальной проекции прямой AM.

Другой пример дан на рис. 111. В пл. β, заданной параллельными прямыми АВ и CD, должна находиться точка К, для которой дана лишь горизонтальная проекция - точка К

Через точку К" проведена некоторая прямая, принимаемая в качестве горизонтальной проекции прямой в данной плоскости. По точкам E" и F" строим Е" на А"В" и F" на C"D". Построенная прямая EF принадлежит пл. β, так как проходит через точки Е и F, заведомо принадлежащие плоскости. Если взять точку К" на E"F", го точка К окажется в пл.β

К числу прямых, занимающих особое положение в плоскости, отнесем горизонтали, фронтали 1) и линии наибольшего наклона к плоскостям проекций . Линию наибольшего наклона к пл. π 1 , будем называть линией ската плоскости 2).

Горизонталями плоскости называются прямые, лежащие в пей и параллельные горизонтальной плоскости проекций.

Построим горизонталь плоскости, заданной треугольником АВС. Требуется провести горизонталь через вершину А (рис. 112).

Так как горизонталь плоскости есть прямая, параллельная пл.π 1 , то фронтальную проекцию этой прямой получим, проведя А"К"⊥А"А". Для построения горизонтальной проекции этой горизонтали строим точку К" и проводим прямую через точки А" и К".

Построенная прямая АК действительно является горизонталью данной плоскости: эта прямая лежит в плоскости, так как проходит через две точки, заведомо ей принадлежащие, и параллельна плоскости проекций π 1 .

Теперь рассмотрим построение горизонтали плоскости, заданной следами.

Горизонтальный след плоскости есть одна из ее горизонталей («нулевая» горизонталь). Поэтому построение какой-либо из горизонталей плоскости сводится


к проведению в этой плоскости прямой, параллельной горизонтальному следу плоскости (рис. 108, слева). Горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости; фронтальная проекция горизонтали параллельна оси проекций.

Фронталями плоскости называются прямые, лежащие в ней и параллельные плоскости проекций π 2 .

Пример построения фронтали в плоскости дан на рис. 113. Пост роение выполнено аналогично построению горизонтали (см. рис. 112).

Пусть фронталь проходит через точку А (рис. 113). Начинаем построение с проведения горизонтальной проекции фронтали - прямой А"К", так как направление этой проекции известно: А К"⊥А"А". Затем строим фронтальную проекцию фронтали - прямую А"К".

1)Наряду с горизонталями и фронталями плоскости можно рассматривать также ее профильные прямые - прямые, лежащие в данной плоскости и параллельные пл. π 3 . Для горизонталей, фронталей и профильных прямых встречается общее название - линия уровня. Однако такое название отвечает обычному представлению только о горизонтальности.

2)Для линии ската плоскости распространено название «линия наибольшего ската», но понятие «скат» по отношению к плоскости не требует добавления «наибольший».

Построенная прямая действительно является фронталью данной плоскости: эта прямая лежит в плоскости, так как проходит через две точки, заведомо ей принадлежащие, и параллельна пл, π 2 .

Построим теперь фронталь плоскости, заданной следами. Рассматривая рис, 108, справа, на котором изображена пл. β и прямая МВ, устанавливаем, что эта прямая - фронталь плоскости. Действительно, она параллельна фронтальному следу («нулевой» фронтали) плоскости, Горизонтальная проекция фронтали параллельна оси х, фронтальная проекция фронтали параллельна фронтальному следу плоскости.

Линиями наибольшего наклона плоскости к плоскостям π 1 , π 2 и π 3 называются прямые, лежащие в ней и перпендикулярные или к горизонталям плоскости, или к ее фронталям, или к ее профильным прямым. В первом случае определяется наклон к пл.π 1 , во втором - к пл. π 2 , в третьем - к пл. π 3 . Для проведения линий наибольшего наклона плоскости можно, конечно, соответственно брать ее следы.

Как было сказано выше, линия наибольшего наклона плоскости к пл. к π 1 , называется линией ската плоскости.

Согласно правилам проецирования прямого угла (см, § 15) горизонтальная проекция линии ската плоскости перпендикулярна к горизонтальной проекции горизонтали этой плоскости или к ее горизонтальному следу. Фронтальная проекция линии ската строится после горизонтальной и может занимать различные положения в зависимости от задания плоскости. На рис, 114 изображена линия ската Пл. α: ВК⊥h" 0α . Так как В"К также перпендикулярна к h" 0α , то ∠ВКВ" есть линейный угол


двугранного, образованного плоскостями α и π 1 Следовательно, линия ската плоскости может служить для определения угла наклона этой плоскости к плоскости проекций π 1 .

Аналогично, линия наибольшего наклона плоскости к пл, π 2 служит для определения угла между этой плоскостью и пл, π 2 , а линия наибольшего наклона к пл.π 3 - для определения угла.с пл. π 3 .

На рис, 115 построены линии ската в заданных плоскостях. Угол пл, α с пл.π 1 выражен проекциями - фронтальной в виде угла В"К"В" и горизонтальной в виде отрезка К"В". Определить величину этого угла можно, построив прямоугольный треугольник по катетам, равным К"В" и В"В".

Очевидно, линия наибольшего наклона плоскости определяет положение этой плоскости. Например, если (рис. 115) задана линия ската КВ, то, проведя перпендикулярную к ней горизонтальную прямую AN или задавшись осью проекций х и проведя h" 0α ⊥ К"В", мы вполне определяем плоскость, для которой КВ является линией ската.

Рассмотренные нами прямые особого положения в плоскости, главным образоии горизонтали и фронтали, весьма часто применяются в различных построениях и при решении задач. Это объясняется значительной простотой построения указанных прямых; их поэтому удобно применять в качестве вспомогательных.

На рис. 116 была задана горизонтальная проекция К" точки К. Требовалось найти фронтальную проекцию К", если точка К должна быть в плоскости, заданной двумя параллельными прямыми, проведенными из точек А и В.

Сначала была проведена некоторая прямая линия, проходящая через точку К и лежащая в заданной плоскости. В качестве такой прямой выбрана фронталь МN: ее горизонтальная проекция проведена через данную проекцию К". Затем построены точки М" и N", определяющие фронтальную проекцию фронтали.

Искомая проекция К" должна находиться на прямой M"N".

На рис. 117 слева по данной фронтальной проекции А" точки А, принадлежащей пл.α, найдена ее горизонтальная проекция (А"); построение произведено при помощи горизонтали ЕК. На рис. 117 справа аналогичная задача решена при помощи фронтали MN.


Еще один пример построения недостающей проекции точки, принадлежащей некоторой плоскости, дан на рис. 118. Слева показано задание: линия ската плоскости (АВ) и горизонтальная проекция точки (К"). Справа на рис. 118 показано построение; через точку К" проведена (перпендикулярная к А"В") горизонтальная проекция горизонтали, на которой должна лежать точка К, по точке L" найдена фронтальная проекция этой горизонтали и на ней искомая проекция К".

На рис. 119 дан пример построения второй проекции некоторой плоской кривой, если известна одна проекция (горизонтальная) и пл. α, в которой эта кривая расположена. Взяв на горизонтальной проекции кривой ряд точек, находим при помощи горизонталей точки для построения фронтальной проекции кривой.

Стрелками показан ход построения фронтальной проекции А" по горизонтальной проекции А".

Вопросы к §§ 16-18

  1. Как задаетcя плоскость на чертеже?
  2. Что такое след плоскости на плоскости проекций?
  3. Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости?
  4. Как определяется на чертеже, принадлежит ли прямая данной плоскости?
  5. Как построить на чертеже точку, принадлежащую данной плоскости?
  6. Что такое фронталь, горизонталь и линия ската плоскости?
  7. Может ли служить линия ската плоскости для определения угла наклона этой плоскости к плоскости проекций π 1 ?
  8. Определяет ли прямая линия плоскость, для которой эта прямая является, линией ската?

Чтобы прямая лежала в данной плоскости, необходимо, чтобы эта прямая имела с плоскостью две общие точки, которые и определят эту прямую.
Возьмем на данных прямых две произвольно расположенные точки Е и F (Е 1 Е 2 и F 1 F 2 ) и проведем через них прямую k (k 1 и k 2 ). Эта прямая будет расположена в данной плоскости, так как она имеет с ней две общие точки (фиг.232,б).
Изображение на комплексном чертеже прямой, расположенной в плоскости, заданной следами:
а) Возьмем на следах k и L произвольно точки М (М 1 М 2 ) и N (N 1 N 2 ) как следы прямой (фиг.233,а).
б) Проведем через одноименные фронтальные (М 2 и N 2 ) и горизонтальные (М 1 и N 1 ) проекции точек М и N прямые (фиг.233,б).
Прямая MN будет расположена в плоскости а как имеющая с ней две общие точки.
Отсюда следует: для того чтобы прямая принадлежала плоскости, надо, чтобы следы прямой лежали на одноименных следах этой плоскости.

Прямая лежит в плоскости, если имеет с ней одну общую точку и параллельна прямой, лежащей в плоскости. Пусть задана плоскость (фиг.234,а) прямой АВ (А 1 В 1 и A 2 В 2 ) и точкой С (C 1 C 2 ).
Требуется в заданной плоскости провести прямую через заданную точку С .
Проведем через точку С (С 1 С 2 ) прямую параллельно прямой АВ (А 1 В 1 и А 2 В 2 ); эта прямая будет расположена в данной плоскости, так как она имеет с плоскостью общую точку и параллельна прямой, лежащей в данной плоскости (фиг.234,б).
Изображение на комплексном чертеже прямой , расположенной в плоскости и параллельной одному из следов плоскости. Для проведения прямой в заданной следами плоскости а общего положения (прямая должна быть параллельна горизонтальному следу k данной плоскости), возьмем на следе L произвольную точку N (N 1 N 2 ) как точку, лежащую в данной плоскости а (фиг.235,а).
След k принимаем за прямую, лежащую в плоскости П 1 Проведем прямую через точку N 1 параллельно прямой k 1 получим горизонтальную проекцию h 1 прямой h . Фронтальная проекция h 2 прямой h пройдет через точку N 2 и расположится параллельно оси х 12 как прямая, параллельная плоскости П 1 (фиг.235,б).
Прямая h будет принадлежать плоскости а , как имеющая с ней общую точку (след N ) и параллельная прямой (следу к ), лежащей в данной плоскости.
Аналогичное построение будет справедливо и для случая, когда требуется провести прямую в заданной следами плоскости общего положения параллельно фронтальному следу L (фиг.235,в и г).
Прямая h , лежащая в плоскости а , параллельная горизонтальной плоскости проекций П 1 , называется горизонталью данной плоскости (фиг.235,а и б).
Прямая f , лежащая в плоскости а , параллельная фронтальной плоскости проекций П 2 , называется фронталью данной плоскости (фиг.235,в и г).
Отсюда следует, что через всякую точку, лежащую в данной плоскости, можно провести одну горизонталь и одну фронталь. Разобрав различные изображения прямой в плоскости, можно на комплексном чертеже решить обратную задачу, т. е., имея проекции прямой, провести через нее соответствующую плоскость.

Пример 1. Через данный отрезок АВ (А 1 В 1 А 2 В 2 ) провести плоскость общего положения и показать проекции следов этой плоскости (фиг. 236,а).
Зная, что следы прямой должны лежать на одноименных следах плоскости, сначала находим следы прямой, затем выбираем в произвольном месте на оси х 12 точку F 12 схода следов (фиг. 236,б) и, наконец, проводим следы плоскости общего положения (фиг. 236,в).

Пример 2. Через данный отрезок АВ (А 1 В 1 , А 2 В 2 ) провести горизонтально - проектирующую плоскость и показать ее проекцию.
Так как в этом случае горизонтальная проекция прямой должна сливаться с горизонтальной проекцией плоскости, проводим горизонтальную проекцию σ 1 плоскости через горизонтальную проекцию прямой (фиг. 237).
Точка в плоскости. В случае изображения на комплексном чертеже проекций точки, лежащей в данной плоскости, сначала проводят в плоскости вспомогательную прямую, а затем на ней изображают точку.
а) Построить проекции произвольной точки A , принадлежащей плоскости а , заданной следами (фиг.238,а).
Воспользуемся фронталью данной плоскости а как прямой, лежащей в плоскости. Спроектируем одну из фронталей плоскости а , например f (f 1 , f 2 ) (фиг.238,б).
Затем на фронтали проектируем произвольную точку, которую принимаем за заданную точку А (А 1 A 2 ) (фиг.238,в).
Так как обе проекции А 1 и А 2 точки А лежат на проекциях фронтали f плоскости а , то, следовательно, точка А лежит в заданной плоскости а .
Таким же способом можно выполнить построение, воспользовавшись горизонталью h (фиг.238,г)
б) Пусть плоскость задана двумя пересекающимися прямыми АВ (A 1 B 1 , A 2 A 2 ) и ВС (B 1 C 1 , В 2 С 2 ), требуется найти проекции D 1 и D 2 точки D лежащей в заданной плоскости вне этих прямых (фиг.239,а). Зная, что проекции точки должны лежать на проекциях прямой, принадлежащей данной плоскости, проводим вспомогательную прямую EF (E 1 F 1 , E 2 F 2 ) так, чтобы она лежала в данной плоскости (фиг.239,б). Затем на прямой EF (фиг.239,в) проектируем точку D (D 1 D 2 ).


Так как точка D (D 1 D 2 ) лежит на прямой EF (E 1 F 1 , E 2 F 2 ), находящейся в заданной плоскости, следовательно, она принадлежит заданной плоскости.
в) Пусть плоскость σ задана фронтальной проекцией σ 2 . Требуется построить проекции произвольной точки А , принадлежащей данной плоскости.
Так как плоскость σ - фронтально - проектирующая, то по свойству проектирующих плоскостей фронтальная проекция точки, лежащей в этой плоскости, должна сливаться с фронтальной проекцией данной плоскости.
Спроектируем произвольную точку А так, чтобы фронтальная проекция A 2 точки лежала на проекции σ 2 , это и определит, что точка A (A 1 A 2 ) лежит в заданной плоскости (фиг.240).
Такое построение будет справедливо и для остальных проектирующих плоскостей.
Рассмотрим несколько примеров.
Пример I . Дан треугольник AВС (А 1 В 1 С 1 , A 2 B 2 C 2 ) и произвольно расположенная точка D (фиг.241,а); требуется определить, лежит ли точка D (D 1 D 2 ) в плоскости данного треугольника? Порядок проверки указан цифрами на (фиг.241,б).
1 - проводим через точки С 2 и D 2 прямую, получаем точку K 2 ;
2 - проводим вертикальную линию связи, получаем точку К 1 ;
3 - проводим через точки С 1 и К 1 прямую; в данном случае она прошла через точку Ьъ следовательно, точка D (D 1 D 2 ) лежит на прямой СК (С 1 К 1 , С 2 K 2 ), так как ее проекции лежат на проекциях этой прямой и на одной линии связи; прямая СК принадлежит плоскости треугольника ABC (A 1 B 1 C 1 , А 2 В 2 С 2 ), так как имеет с ней две общие точки; следовательно, точка D принадлежит плоскости треугольника.
Пример II . Дан треугольник ABC и расположенная произвольно прямая EF (Е 1 F 1 E 2 F 2 ), требуется определить, лежит ли прямая в плоскости данного треугольника (фиг.242,а)?
Порядок проверки указан цифрами на (фиг.242,б):
1 - продолжаем отрезок E 2 F 2 ; в пересечении с прямыми В 2 А 2 и А 2 С 2 получаем точки Р 2 и Т 2 ;
2 - проводим через точки Р 2 и Т 2 вертикальные линии связи до пересечения с прямыми В 1 А 1 и А 1 С 1 получаем точки Р 1 и Т 1 ;
3 - проведем через точки Р 1 и T 1 прямую; в данном случае прямая сливается с отрезком E 1 F 1 следовательно, прямая РТ принадлежит плоскости треугольника, так как одноименные проекции точек Р и Т лежат на одноименных проекциях прямых ВА и АС , принадлежащих треугольнику, и на одной линии связи; следовательно, прямая EF принадлежит плоскости данного треугольника.

Принадлежность прямой плоскости :

2) прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости и параллельна какой-нибудь прямой этой плоскости.

Из этих двух признаков принадлежности прямой плоскости можно сделать следующие выводы:

1) если плоскость задана следами, то прямая принадлежит плоскости, если следы прямой лежат на одноименных следах плоскости;

2) прямая принадлежит плоскости, если она с одним следом плоскости имеет общую точку, а другому следу параллельна.

Рассмотрим плоскость Q, общего положения, задана следами (рисунок 17). Прямая NM принадлежит этой плоскости, поскольку ее следы лежат на одноименных следах плоскостей.

На рисунке 18 показана плоскость, заданная пересекающимися прямыми t и n. Чтобы построить прямую, лежащую в этой плоскости, достаточно провести произвольно одну из проекций, например, горизонтальную c1, а затем спроецировать точки пересечения этой прямой с прямыми плоскости на фронтальную плоскость. Фронтальная проекция прямой c2 пройдет через полученные точки.

Рисунок 17 Рисунок 18

Согласно второму положению на рисунке 19 построена прямая h, принадлежащая плоскости Р, - она имеет точку N (N1, N2) общую с плоскостью Р и параллельна прямой, лежащей в плоскости - горизонтальному следу Р1.

Рисунок 19 Рисунок 20

Рассмотрим плоскости частного положения. Если прямая или фигура принадлежит горизонтально-проецирующей плоскости (рисунок 20), то горизонтальные проекции этих геометрических элементов совпадают с горизонтальным следом плоскости.

Если прямая или плоская фигура принадлежит фронтально-проецирующей плоскости, то фронтальные проекции этих геометрических элементов совпадают с фронтальным следом плоскости.

Принадлежность точки плоскости:

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Пример: Дана плоскость Р (a || b). Известна горизонтальная проекция точки В, принадлежащей плоскости Р. Найти фронтальную проекцию точки В (рисунок 21).

На рисунках 22, 23, 24 показано фрагментарно решение этой задачи:

1) проведем через В1 (известную проекцию точки В) любую прямую,

лежащую в плоскости Р, - для этого прямая должна иметь с плоскостью две общие точки. Отметим их на чертеже - М1 и K1;

2) построим фронтальные проекции этих точек по принадлежности точек прямым, т. е. М2 на прямой а, K2 на прямой b. Проведем через фронтальные проекции точек фронтальную проекцию прямой;

Рисунок 21 Рисунок 22

Лучшие статьи по теме